Рассчитать высоту треугольника со сторонами 70, 60 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 60 + 20}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-70)(75-60)(75-20)}}{60}\normalsize = 18.5404962}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-70)(75-60)(75-20)}}{70}\normalsize = 15.8918539}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-70)(75-60)(75-20)}}{20}\normalsize = 55.6214887}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 60 и 20 равна 18.5404962
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 60 и 20 равна 15.8918539
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 60 и 20 равна 55.6214887
Ссылка на результат
?n1=70&n2=60&n3=20
Найти высоту треугольника со сторонами 104, 95 и 20
Найти высоту треугольника со сторонами 59, 42 и 20
Найти высоту треугольника со сторонами 112, 110 и 13
Найти высоту треугольника со сторонами 144, 107 и 71
Найти высоту треугольника со сторонами 144, 123 и 97
Найти высоту треугольника со сторонами 143, 136 и 118
Найти высоту треугольника со сторонами 59, 42 и 20
Найти высоту треугольника со сторонами 112, 110 и 13
Найти высоту треугольника со сторонами 144, 107 и 71
Найти высоту треугольника со сторонами 144, 123 и 97
Найти высоту треугольника со сторонами 143, 136 и 118