Рассчитать высоту треугольника со сторонами 70, 60 и 43

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 60 + 43}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-70)(86.5-60)(86.5-43)}}{60}\normalsize = 42.755928}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-70)(86.5-60)(86.5-43)}}{70}\normalsize = 36.6479382}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-70)(86.5-60)(86.5-43)}}{43}\normalsize = 59.6594344}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 60 и 43 равна 42.755928
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 60 и 43 равна 36.6479382
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 60 и 43 равна 59.6594344
Ссылка на результат
?n1=70&n2=60&n3=43