Рассчитать высоту треугольника со сторонами 70, 61 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 61 + 13}{2}} \normalsize = 72}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{72(72-70)(72-61)(72-13)}}{61}\normalsize = 10.023139}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{72(72-70)(72-61)(72-13)}}{70}\normalsize = 8.73444974}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{72(72-70)(72-61)(72-13)}}{13}\normalsize = 47.0316524}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 61 и 13 равна 10.023139
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 61 и 13 равна 8.73444974
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 61 и 13 равна 47.0316524
Ссылка на результат
?n1=70&n2=61&n3=13
Найти высоту треугольника со сторонами 130, 107 и 98
Найти высоту треугольника со сторонами 135, 107 и 31
Найти высоту треугольника со сторонами 113, 113 и 91
Найти высоту треугольника со сторонами 86, 82 и 66
Найти высоту треугольника со сторонами 52, 32 и 24
Найти высоту треугольника со сторонами 127, 80 и 51
Найти высоту треугольника со сторонами 135, 107 и 31
Найти высоту треугольника со сторонами 113, 113 и 91
Найти высоту треугольника со сторонами 86, 82 и 66
Найти высоту треугольника со сторонами 52, 32 и 24
Найти высоту треугольника со сторонами 127, 80 и 51