Рассчитать высоту треугольника со сторонами 70, 62 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 62 + 46}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-70)(89-62)(89-46)}}{62}\normalsize = 45.1987287}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-70)(89-62)(89-46)}}{70}\normalsize = 40.0331597}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-70)(89-62)(89-46)}}{46}\normalsize = 60.9200257}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 62 и 46 равна 45.1987287
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 62 и 46 равна 40.0331597
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 62 и 46 равна 60.9200257
Ссылка на результат
?n1=70&n2=62&n3=46
Найти высоту треугольника со сторонами 128, 100 и 96
Найти высоту треугольника со сторонами 126, 116 и 23
Найти высоту треугольника со сторонами 47, 41 и 21
Найти высоту треугольника со сторонами 130, 101 и 31
Найти высоту треугольника со сторонами 129, 110 и 88
Найти высоту треугольника со сторонами 105, 102 и 37
Найти высоту треугольника со сторонами 126, 116 и 23
Найти высоту треугольника со сторонами 47, 41 и 21
Найти высоту треугольника со сторонами 130, 101 и 31
Найти высоту треугольника со сторонами 129, 110 и 88
Найти высоту треугольника со сторонами 105, 102 и 37