Рассчитать высоту треугольника со сторонами 70, 63 и 46

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 63 + 46}{2}} \normalsize = 89.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89.5(89.5-70)(89.5-63)(89.5-46)}}{63}\normalsize = 45.0283295}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89.5(89.5-70)(89.5-63)(89.5-46)}}{70}\normalsize = 40.5254965}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89.5(89.5-70)(89.5-63)(89.5-46)}}{46}\normalsize = 61.6692338}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 63 и 46 равна 45.0283295
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 63 и 46 равна 40.5254965
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 63 и 46 равна 61.6692338
Ссылка на результат
?n1=70&n2=63&n3=46