Рассчитать высоту треугольника со сторонами 70, 65 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 65 + 60}{2}} \normalsize = 97.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97.5(97.5-70)(97.5-65)(97.5-60)}}{65}\normalsize = 55.6214887}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97.5(97.5-70)(97.5-65)(97.5-60)}}{70}\normalsize = 51.6485252}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97.5(97.5-70)(97.5-65)(97.5-60)}}{60}\normalsize = 60.2566127}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 65 и 60 равна 55.6214887
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 65 и 60 равна 51.6485252
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 65 и 60 равна 60.2566127
Ссылка на результат
?n1=70&n2=65&n3=60
Найти высоту треугольника со сторонами 137, 128 и 27
Найти высоту треугольника со сторонами 57, 33 и 29
Найти высоту треугольника со сторонами 137, 126 и 77
Найти высоту треугольника со сторонами 132, 124 и 14
Найти высоту треугольника со сторонами 145, 144 и 120
Найти высоту треугольника со сторонами 84, 83 и 71
Найти высоту треугольника со сторонами 57, 33 и 29
Найти высоту треугольника со сторонами 137, 126 и 77
Найти высоту треугольника со сторонами 132, 124 и 14
Найти высоту треугольника со сторонами 145, 144 и 120
Найти высоту треугольника со сторонами 84, 83 и 71