Рассчитать высоту треугольника со сторонами 70, 68 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 68 + 54}{2}} \normalsize = 96}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96(96-70)(96-68)(96-54)}}{68}\normalsize = 50.3903105}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96(96-70)(96-68)(96-54)}}{70}\normalsize = 48.9505873}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96(96-70)(96-68)(96-54)}}{54}\normalsize = 63.4544651}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 68 и 54 равна 50.3903105
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 68 и 54 равна 48.9505873
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 68 и 54 равна 63.4544651
Ссылка на результат
?n1=70&n2=68&n3=54
Найти высоту треугольника со сторонами 104, 94 и 41
Найти высоту треугольника со сторонами 89, 77 и 47
Найти высоту треугольника со сторонами 141, 109 и 106
Найти высоту треугольника со сторонами 98, 65 и 63
Найти высоту треугольника со сторонами 120, 120 и 12
Найти высоту треугольника со сторонами 145, 119 и 48
Найти высоту треугольника со сторонами 89, 77 и 47
Найти высоту треугольника со сторонами 141, 109 и 106
Найти высоту треугольника со сторонами 98, 65 и 63
Найти высоту треугольника со сторонами 120, 120 и 12
Найти высоту треугольника со сторонами 145, 119 и 48