Рассчитать высоту треугольника со сторонами 70, 69 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 69 + 40}{2}} \normalsize = 89.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89.5(89.5-70)(89.5-69)(89.5-40)}}{69}\normalsize = 38.5735188}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89.5(89.5-70)(89.5-69)(89.5-40)}}{70}\normalsize = 38.0224685}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89.5(89.5-70)(89.5-69)(89.5-40)}}{40}\normalsize = 66.5393199}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 69 и 40 равна 38.5735188
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 69 и 40 равна 38.0224685
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 69 и 40 равна 66.5393199
Ссылка на результат
?n1=70&n2=69&n3=40
Найти высоту треугольника со сторонами 108, 102 и 69
Найти высоту треугольника со сторонами 76, 73 и 29
Найти высоту треугольника со сторонами 14, 11 и 7
Найти высоту треугольника со сторонами 117, 96 и 47
Найти высоту треугольника со сторонами 78, 65 и 30
Найти высоту треугольника со сторонами 150, 143 и 8
Найти высоту треугольника со сторонами 76, 73 и 29
Найти высоту треугольника со сторонами 14, 11 и 7
Найти высоту треугольника со сторонами 117, 96 и 47
Найти высоту треугольника со сторонами 78, 65 и 30
Найти высоту треугольника со сторонами 150, 143 и 8