Рассчитать высоту треугольника со сторонами 70, 69 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 69 + 7}{2}} \normalsize = 73}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73(73-70)(73-69)(73-7)}}{69}\normalsize = 6.96955301}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73(73-70)(73-69)(73-7)}}{70}\normalsize = 6.86998797}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73(73-70)(73-69)(73-7)}}{7}\normalsize = 68.6998797}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 69 и 7 равна 6.96955301
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 69 и 7 равна 6.86998797
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 69 и 7 равна 68.6998797
Ссылка на результат
?n1=70&n2=69&n3=7
Найти высоту треугольника со сторонами 106, 71 и 40
Найти высоту треугольника со сторонами 125, 124 и 44
Найти высоту треугольника со сторонами 146, 145 и 137
Найти высоту треугольника со сторонами 125, 120 и 108
Найти высоту треугольника со сторонами 111, 94 и 56
Найти высоту треугольника со сторонами 141, 119 и 112
Найти высоту треугольника со сторонами 125, 124 и 44
Найти высоту треугольника со сторонами 146, 145 и 137
Найти высоту треугольника со сторонами 125, 120 и 108
Найти высоту треугольника со сторонами 111, 94 и 56
Найти высоту треугольника со сторонами 141, 119 и 112