Рассчитать высоту треугольника со сторонами 71, 46 и 42

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=71+46+422=79.5\color{#0000FF}{p = \Large{\frac{71 + 46 + 42}{2}} \normalsize = 79.5}
hb=279.5(79.571)(79.546)(79.542)46=40.0592882\color{#0000FF}{h_b = \Large\frac{2\sqrt{79.5(79.5-71)(79.5-46)(79.5-42)}}{46}\normalsize = 40.0592882}
ha=279.5(79.571)(79.546)(79.542)71=25.9539051\color{#0000FF}{h_a = \Large\frac{2\sqrt{79.5(79.5-71)(79.5-46)(79.5-42)}}{71}\normalsize = 25.9539051}
hc=279.5(79.571)(79.546)(79.542)42=43.8744585\color{#0000FF}{h_c = \Large\frac{2\sqrt{79.5(79.5-71)(79.5-46)(79.5-42)}}{42}\normalsize = 43.8744585}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 46 и 42 равна 40.0592882
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 46 и 42 равна 25.9539051
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 46 и 42 равна 43.8744585
Ссылка на результат
?n1=71&n2=46&n3=42