Рассчитать высоту треугольника со сторонами 71, 49 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 49 + 36}{2}} \normalsize = 78}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78(78-71)(78-49)(78-36)}}{49}\normalsize = 33.2854077}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78(78-71)(78-49)(78-36)}}{71}\normalsize = 22.9716194}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78(78-71)(78-49)(78-36)}}{36}\normalsize = 45.3051383}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 49 и 36 равна 33.2854077
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 49 и 36 равна 22.9716194
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 49 и 36 равна 45.3051383
Ссылка на результат
?n1=71&n2=49&n3=36
Найти высоту треугольника со сторонами 83, 81 и 80
Найти высоту треугольника со сторонами 150, 129 и 54
Найти высоту треугольника со сторонами 133, 81 и 60
Найти высоту треугольника со сторонами 136, 112 и 101
Найти высоту треугольника со сторонами 139, 93 и 62
Найти высоту треугольника со сторонами 141, 115 и 93
Найти высоту треугольника со сторонами 150, 129 и 54
Найти высоту треугольника со сторонами 133, 81 и 60
Найти высоту треугольника со сторонами 136, 112 и 101
Найти высоту треугольника со сторонами 139, 93 и 62
Найти высоту треугольника со сторонами 141, 115 и 93