Рассчитать высоту треугольника со сторонами 71, 51 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 51 + 27}{2}} \normalsize = 74.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74.5(74.5-71)(74.5-51)(74.5-27)}}{51}\normalsize = 21.1569332}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74.5(74.5-71)(74.5-51)(74.5-27)}}{71}\normalsize = 15.1972337}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74.5(74.5-71)(74.5-51)(74.5-27)}}{27}\normalsize = 39.963096}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 51 и 27 равна 21.1569332
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 51 и 27 равна 15.1972337
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 51 и 27 равна 39.963096
Ссылка на результат
?n1=71&n2=51&n3=27
Найти высоту треугольника со сторонами 137, 124 и 72
Найти высоту треугольника со сторонами 102, 78 и 65
Найти высоту треугольника со сторонами 93, 93 и 43
Найти высоту треугольника со сторонами 99, 95 и 65
Найти высоту треугольника со сторонами 132, 125 и 67
Найти высоту треугольника со сторонами 37, 32 и 20
Найти высоту треугольника со сторонами 102, 78 и 65
Найти высоту треугольника со сторонами 93, 93 и 43
Найти высоту треугольника со сторонами 99, 95 и 65
Найти высоту треугольника со сторонами 132, 125 и 67
Найти высоту треугольника со сторонами 37, 32 и 20