Рассчитать высоту треугольника со сторонами 71, 52 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 52 + 27}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-71)(75-52)(75-27)}}{52}\normalsize = 22.134607}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-71)(75-52)(75-27)}}{71}\normalsize = 16.2112615}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-71)(75-52)(75-27)}}{27}\normalsize = 42.6296135}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 52 и 27 равна 22.134607
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 52 и 27 равна 16.2112615
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 52 и 27 равна 42.6296135
Ссылка на результат
?n1=71&n2=52&n3=27
Найти высоту треугольника со сторонами 147, 139 и 86
Найти высоту треугольника со сторонами 107, 84 и 36
Найти высоту треугольника со сторонами 105, 79 и 39
Найти высоту треугольника со сторонами 117, 85 и 72
Найти высоту треугольника со сторонами 121, 104 и 92
Найти высоту треугольника со сторонами 78, 52 и 33
Найти высоту треугольника со сторонами 107, 84 и 36
Найти высоту треугольника со сторонами 105, 79 и 39
Найти высоту треугольника со сторонами 117, 85 и 72
Найти высоту треугольника со сторонами 121, 104 и 92
Найти высоту треугольника со сторонами 78, 52 и 33