Рассчитать высоту треугольника со сторонами 71, 54 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 54 + 48}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-71)(86.5-54)(86.5-48)}}{54}\normalsize = 47.9713769}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-71)(86.5-54)(86.5-48)}}{71}\normalsize = 36.4852726}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-71)(86.5-54)(86.5-48)}}{48}\normalsize = 53.967799}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 54 и 48 равна 47.9713769
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 54 и 48 равна 36.4852726
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 54 и 48 равна 53.967799
Ссылка на результат
?n1=71&n2=54&n3=48
Найти высоту треугольника со сторонами 150, 104 и 50
Найти высоту треугольника со сторонами 141, 118 и 68
Найти высоту треугольника со сторонами 99, 75 и 74
Найти высоту треугольника со сторонами 104, 84 и 47
Найти высоту треугольника со сторонами 98, 77 и 36
Найти высоту треугольника со сторонами 139, 136 и 7
Найти высоту треугольника со сторонами 141, 118 и 68
Найти высоту треугольника со сторонами 99, 75 и 74
Найти высоту треугольника со сторонами 104, 84 и 47
Найти высоту треугольника со сторонами 98, 77 и 36
Найти высоту треугольника со сторонами 139, 136 и 7