Рассчитать высоту треугольника со сторонами 71, 56 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 56 + 35}{2}} \normalsize = 81}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81(81-71)(81-56)(81-35)}}{56}\normalsize = 34.4693742}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81(81-71)(81-56)(81-35)}}{71}\normalsize = 27.187112}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81(81-71)(81-56)(81-35)}}{35}\normalsize = 55.1509987}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 56 и 35 равна 34.4693742
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 56 и 35 равна 27.187112
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 56 и 35 равна 55.1509987
Ссылка на результат
?n1=71&n2=56&n3=35
Найти высоту треугольника со сторонами 119, 103 и 87
Найти высоту треугольника со сторонами 111, 68 и 57
Найти высоту треугольника со сторонами 124, 121 и 61
Найти высоту треугольника со сторонами 108, 59 и 57
Найти высоту треугольника со сторонами 80, 53 и 31
Найти высоту треугольника со сторонами 123, 122 и 113
Найти высоту треугольника со сторонами 111, 68 и 57
Найти высоту треугольника со сторонами 124, 121 и 61
Найти высоту треугольника со сторонами 108, 59 и 57
Найти высоту треугольника со сторонами 80, 53 и 31
Найти высоту треугольника со сторонами 123, 122 и 113