Рассчитать высоту треугольника со сторонами 71, 57 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 57 + 54}{2}} \normalsize = 91}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91(91-71)(91-57)(91-54)}}{57}\normalsize = 53.0922529}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91(91-71)(91-57)(91-54)}}{71}\normalsize = 42.623358}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91(91-71)(91-57)(91-54)}}{54}\normalsize = 56.0418225}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 57 и 54 равна 53.0922529
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 57 и 54 равна 42.623358
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 57 и 54 равна 56.0418225
Ссылка на результат
?n1=71&n2=57&n3=54
Найти высоту треугольника со сторонами 66, 62 и 47
Найти высоту треугольника со сторонами 128, 118 и 67
Найти высоту треугольника со сторонами 141, 81 и 79
Найти высоту треугольника со сторонами 95, 90 и 14
Найти высоту треугольника со сторонами 112, 69 и 61
Найти высоту треугольника со сторонами 128, 98 и 66
Найти высоту треугольника со сторонами 128, 118 и 67
Найти высоту треугольника со сторонами 141, 81 и 79
Найти высоту треугольника со сторонами 95, 90 и 14
Найти высоту треугольника со сторонами 112, 69 и 61
Найти высоту треугольника со сторонами 128, 98 и 66