Рассчитать высоту треугольника со сторонами 71, 60 и 25

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 60 + 25}{2}} \normalsize = 78}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78(78-71)(78-60)(78-25)}}{60}\normalsize = 24.0574313}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78(78-71)(78-60)(78-25)}}{71}\normalsize = 20.3302236}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78(78-71)(78-60)(78-25)}}{25}\normalsize = 57.7378351}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 60 и 25 равна 24.0574313
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 60 и 25 равна 20.3302236
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 60 и 25 равна 57.7378351
Ссылка на результат
?n1=71&n2=60&n3=25