Рассчитать высоту треугольника со сторонами 71, 61 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 61 + 36}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-71)(84-61)(84-36)}}{61}\normalsize = 35.9994625}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-71)(84-61)(84-36)}}{71}\normalsize = 30.9291157}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-71)(84-61)(84-36)}}{36}\normalsize = 60.9990892}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 61 и 36 равна 35.9994625
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 61 и 36 равна 30.9291157
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 61 и 36 равна 60.9990892
Ссылка на результат
?n1=71&n2=61&n3=36
Найти высоту треугольника со сторонами 123, 88 и 67
Найти высоту треугольника со сторонами 133, 90 и 69
Найти высоту треугольника со сторонами 127, 116 и 107
Найти высоту треугольника со сторонами 150, 89 и 62
Найти высоту треугольника со сторонами 127, 119 и 73
Найти высоту треугольника со сторонами 120, 114 и 61
Найти высоту треугольника со сторонами 133, 90 и 69
Найти высоту треугольника со сторонами 127, 116 и 107
Найти высоту треугольника со сторонами 150, 89 и 62
Найти высоту треугольника со сторонами 127, 119 и 73
Найти высоту треугольника со сторонами 120, 114 и 61