Рассчитать высоту треугольника со сторонами 71, 68 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 68 + 42}{2}} \normalsize = 90.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90.5(90.5-71)(90.5-68)(90.5-42)}}{68}\normalsize = 40.8154704}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90.5(90.5-71)(90.5-68)(90.5-42)}}{71}\normalsize = 39.0908731}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90.5(90.5-71)(90.5-68)(90.5-42)}}{42}\normalsize = 66.0821902}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 68 и 42 равна 40.8154704
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 68 и 42 равна 39.0908731
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 68 и 42 равна 66.0821902
Ссылка на результат
?n1=71&n2=68&n3=42
Найти высоту треугольника со сторонами 136, 132 и 39
Найти высоту треугольника со сторонами 131, 121 и 94
Найти высоту треугольника со сторонами 47, 28 и 20
Найти высоту треугольника со сторонами 101, 64 и 60
Найти высоту треугольника со сторонами 95, 87 и 54
Найти высоту треугольника со сторонами 65, 60 и 15
Найти высоту треугольника со сторонами 131, 121 и 94
Найти высоту треугольника со сторонами 47, 28 и 20
Найти высоту треугольника со сторонами 101, 64 и 60
Найти высоту треугольника со сторонами 95, 87 и 54
Найти высоту треугольника со сторонами 65, 60 и 15