Рассчитать высоту треугольника со сторонами 71, 69 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{71 + 69 + 45}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-71)(92.5-69)(92.5-45)}}{69}\normalsize = 43.1868708}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-71)(92.5-69)(92.5-45)}}{71}\normalsize = 41.9703392}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-71)(92.5-69)(92.5-45)}}{45}\normalsize = 66.2198685}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 71, 69 и 45 равна 43.1868708
Высота треугольника опущенная с вершины A на сторону BC со сторонами 71, 69 и 45 равна 41.9703392
Высота треугольника опущенная с вершины C на сторону AB со сторонами 71, 69 и 45 равна 66.2198685
Ссылка на результат
?n1=71&n2=69&n3=45
Найти высоту треугольника со сторонами 147, 142 и 37
Найти высоту треугольника со сторонами 109, 91 и 22
Найти высоту треугольника со сторонами 146, 93 и 58
Найти высоту треугольника со сторонами 125, 122 и 13
Найти высоту треугольника со сторонами 104, 99 и 66
Найти высоту треугольника со сторонами 104, 97 и 26
Найти высоту треугольника со сторонами 109, 91 и 22
Найти высоту треугольника со сторонами 146, 93 и 58
Найти высоту треугольника со сторонами 125, 122 и 13
Найти высоту треугольника со сторонами 104, 99 и 66
Найти высоту треугольника со сторонами 104, 97 и 26