Рассчитать высоту треугольника со сторонами 72, 50 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 50 + 44}{2}} \normalsize = 83}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83(83-72)(83-50)(83-44)}}{50}\normalsize = 43.3595387}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83(83-72)(83-50)(83-44)}}{72}\normalsize = 30.1107908}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83(83-72)(83-50)(83-44)}}{44}\normalsize = 49.2722031}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 50 и 44 равна 43.3595387
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 50 и 44 равна 30.1107908
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 50 и 44 равна 49.2722031
Ссылка на результат
?n1=72&n2=50&n3=44
Найти высоту треугольника со сторонами 70, 65 и 20
Найти высоту треугольника со сторонами 125, 113 и 20
Найти высоту треугольника со сторонами 137, 99 и 98
Найти высоту треугольника со сторонами 96, 64 и 42
Найти высоту треугольника со сторонами 142, 115 и 30
Найти высоту треугольника со сторонами 126, 98 и 66
Найти высоту треугольника со сторонами 125, 113 и 20
Найти высоту треугольника со сторонами 137, 99 и 98
Найти высоту треугольника со сторонами 96, 64 и 42
Найти высоту треугольника со сторонами 142, 115 и 30
Найти высоту треугольника со сторонами 126, 98 и 66