Рассчитать высоту треугольника со сторонами 72, 57 и 18

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 57 + 18}{2}} \normalsize = 73.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73.5(73.5-72)(73.5-57)(73.5-18)}}{57}\normalsize = 11.1489227}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73.5(73.5-72)(73.5-57)(73.5-18)}}{72}\normalsize = 8.82623044}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73.5(73.5-72)(73.5-57)(73.5-18)}}{18}\normalsize = 35.3049218}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 57 и 18 равна 11.1489227
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 57 и 18 равна 8.82623044
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 57 и 18 равна 35.3049218
Ссылка на результат
?n1=72&n2=57&n3=18