Рассчитать высоту треугольника со сторонами 72, 64 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 64 + 57}{2}} \normalsize = 96.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96.5(96.5-72)(96.5-64)(96.5-57)}}{64}\normalsize = 54.4423607}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96.5(96.5-72)(96.5-64)(96.5-57)}}{72}\normalsize = 48.3932095}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96.5(96.5-72)(96.5-64)(96.5-57)}}{57}\normalsize = 61.1282647}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 64 и 57 равна 54.4423607
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 64 и 57 равна 48.3932095
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 64 и 57 равна 61.1282647
Ссылка на результат
?n1=72&n2=64&n3=57
Найти высоту треугольника со сторонами 129, 102 и 71
Найти высоту треугольника со сторонами 80, 79 и 25
Найти высоту треугольника со сторонами 99, 85 и 77
Найти высоту треугольника со сторонами 136, 116 и 92
Найти высоту треугольника со сторонами 141, 110 и 109
Найти высоту треугольника со сторонами 128, 103 и 85
Найти высоту треугольника со сторонами 80, 79 и 25
Найти высоту треугольника со сторонами 99, 85 и 77
Найти высоту треугольника со сторонами 136, 116 и 92
Найти высоту треугольника со сторонами 141, 110 и 109
Найти высоту треугольника со сторонами 128, 103 и 85