Рассчитать высоту треугольника со сторонами 72, 65 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 65 + 49}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-72)(93-65)(93-49)}}{65}\normalsize = 47.7279867}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-72)(93-65)(93-49)}}{72}\normalsize = 43.0877657}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-72)(93-65)(93-49)}}{49}\normalsize = 63.3126354}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 65 и 49 равна 47.7279867
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 65 и 49 равна 43.0877657
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 65 и 49 равна 63.3126354
Ссылка на результат
?n1=72&n2=65&n3=49
Найти высоту треугольника со сторонами 85, 74 и 33
Найти высоту треугольника со сторонами 120, 113 и 49
Найти высоту треугольника со сторонами 61, 57 и 41
Найти высоту треугольника со сторонами 70, 61 и 35
Найти высоту треугольника со сторонами 130, 91 и 85
Найти высоту треугольника со сторонами 108, 103 и 92
Найти высоту треугольника со сторонами 120, 113 и 49
Найти высоту треугольника со сторонами 61, 57 и 41
Найти высоту треугольника со сторонами 70, 61 и 35
Найти высоту треугольника со сторонами 130, 91 и 85
Найти высоту треугольника со сторонами 108, 103 и 92