Рассчитать высоту треугольника со сторонами 72, 65 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{72 + 65 + 8}{2}} \normalsize = 72.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{72.5(72.5-72)(72.5-65)(72.5-8)}}{65}\normalsize = 4.0745639}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{72.5(72.5-72)(72.5-65)(72.5-8)}}{72}\normalsize = 3.67842575}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{72.5(72.5-72)(72.5-65)(72.5-8)}}{8}\normalsize = 33.1058317}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 72, 65 и 8 равна 4.0745639
Высота треугольника опущенная с вершины A на сторону BC со сторонами 72, 65 и 8 равна 3.67842575
Высота треугольника опущенная с вершины C на сторону AB со сторонами 72, 65 и 8 равна 33.1058317
Ссылка на результат
?n1=72&n2=65&n3=8
Найти высоту треугольника со сторонами 122, 82 и 46
Найти высоту треугольника со сторонами 127, 112 и 33
Найти высоту треугольника со сторонами 136, 117 и 98
Найти высоту треугольника со сторонами 138, 115 и 79
Найти высоту треугольника со сторонами 57, 54 и 10
Найти высоту треугольника со сторонами 53, 49 и 8
Найти высоту треугольника со сторонами 127, 112 и 33
Найти высоту треугольника со сторонами 136, 117 и 98
Найти высоту треугольника со сторонами 138, 115 и 79
Найти высоту треугольника со сторонами 57, 54 и 10
Найти высоту треугольника со сторонами 53, 49 и 8