Рассчитать высоту треугольника со сторонами 73, 41 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{73 + 41 + 37}{2}} \normalsize = 75.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75.5(75.5-73)(75.5-41)(75.5-37)}}{41}\normalsize = 24.4247165}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75.5(75.5-73)(75.5-41)(75.5-37)}}{73}\normalsize = 13.7179915}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75.5(75.5-73)(75.5-41)(75.5-37)}}{37}\normalsize = 27.0652264}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 73, 41 и 37 равна 24.4247165
Высота треугольника опущенная с вершины A на сторону BC со сторонами 73, 41 и 37 равна 13.7179915
Высота треугольника опущенная с вершины C на сторону AB со сторонами 73, 41 и 37 равна 27.0652264
Ссылка на результат
?n1=73&n2=41&n3=37
Найти высоту треугольника со сторонами 138, 130 и 49
Найти высоту треугольника со сторонами 44, 35 и 28
Найти высоту треугольника со сторонами 146, 117 и 74
Найти высоту треугольника со сторонами 143, 123 и 23
Найти высоту треугольника со сторонами 130, 121 и 30
Найти высоту треугольника со сторонами 83, 83 и 64
Найти высоту треугольника со сторонами 44, 35 и 28
Найти высоту треугольника со сторонами 146, 117 и 74
Найти высоту треугольника со сторонами 143, 123 и 23
Найти высоту треугольника со сторонами 130, 121 и 30
Найти высоту треугольника со сторонами 83, 83 и 64