Рассчитать высоту треугольника со сторонами 73, 58 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{73 + 58 + 18}{2}} \normalsize = 74.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74.5(74.5-73)(74.5-58)(74.5-18)}}{58}\normalsize = 11.129918}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74.5(74.5-73)(74.5-58)(74.5-18)}}{73}\normalsize = 8.84294853}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74.5(74.5-73)(74.5-58)(74.5-18)}}{18}\normalsize = 35.8630691}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 73, 58 и 18 равна 11.129918
Высота треугольника опущенная с вершины A на сторону BC со сторонами 73, 58 и 18 равна 8.84294853
Высота треугольника опущенная с вершины C на сторону AB со сторонами 73, 58 и 18 равна 35.8630691
Ссылка на результат
?n1=73&n2=58&n3=18
Найти высоту треугольника со сторонами 128, 103 и 29
Найти высоту треугольника со сторонами 142, 81 и 67
Найти высоту треугольника со сторонами 118, 68 и 66
Найти высоту треугольника со сторонами 145, 135 и 56
Найти высоту треугольника со сторонами 129, 127 и 30
Найти высоту треугольника со сторонами 98, 92 и 50
Найти высоту треугольника со сторонами 142, 81 и 67
Найти высоту треугольника со сторонами 118, 68 и 66
Найти высоту треугольника со сторонами 145, 135 и 56
Найти высоту треугольника со сторонами 129, 127 и 30
Найти высоту треугольника со сторонами 98, 92 и 50