Рассчитать высоту треугольника со сторонами 73, 60 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{73 + 60 + 51}{2}} \normalsize = 92}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92(92-73)(92-60)(92-51)}}{60}\normalsize = 50.4796549}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92(92-73)(92-60)(92-51)}}{73}\normalsize = 41.4901273}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92(92-73)(92-60)(92-51)}}{51}\normalsize = 59.3878293}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 73, 60 и 51 равна 50.4796549
Высота треугольника опущенная с вершины A на сторону BC со сторонами 73, 60 и 51 равна 41.4901273
Высота треугольника опущенная с вершины C на сторону AB со сторонами 73, 60 и 51 равна 59.3878293
Ссылка на результат
?n1=73&n2=60&n3=51
Найти высоту треугольника со сторонами 136, 135 и 56
Найти высоту треугольника со сторонами 82, 70 и 70
Найти высоту треугольника со сторонами 109, 79 и 46
Найти высоту треугольника со сторонами 81, 47 и 42
Найти высоту треугольника со сторонами 55, 51 и 8
Найти высоту треугольника со сторонами 144, 106 и 83
Найти высоту треугольника со сторонами 82, 70 и 70
Найти высоту треугольника со сторонами 109, 79 и 46
Найти высоту треугольника со сторонами 81, 47 и 42
Найти высоту треугольника со сторонами 55, 51 и 8
Найти высоту треугольника со сторонами 144, 106 и 83