Рассчитать высоту треугольника со сторонами 73, 62 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{73 + 62 + 35}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-73)(85-62)(85-35)}}{62}\normalsize = 34.9371369}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-73)(85-62)(85-35)}}{73}\normalsize = 29.6726369}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-73)(85-62)(85-35)}}{35}\normalsize = 61.8886426}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 73, 62 и 35 равна 34.9371369
Высота треугольника опущенная с вершины A на сторону BC со сторонами 73, 62 и 35 равна 29.6726369
Высота треугольника опущенная с вершины C на сторону AB со сторонами 73, 62 и 35 равна 61.8886426
Ссылка на результат
?n1=73&n2=62&n3=35
Найти высоту треугольника со сторонами 143, 126 и 107
Найти высоту треугольника со сторонами 139, 139 и 85
Найти высоту треугольника со сторонами 146, 93 и 79
Найти высоту треугольника со сторонами 140, 127 и 14
Найти высоту треугольника со сторонами 77, 51 и 40
Найти высоту треугольника со сторонами 133, 105 и 44
Найти высоту треугольника со сторонами 139, 139 и 85
Найти высоту треугольника со сторонами 146, 93 и 79
Найти высоту треугольника со сторонами 140, 127 и 14
Найти высоту треугольника со сторонами 77, 51 и 40
Найти высоту треугольника со сторонами 133, 105 и 44