Рассчитать высоту треугольника со сторонами 73, 69 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{73 + 69 + 66}{2}} \normalsize = 104}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104(104-73)(104-69)(104-66)}}{69}\normalsize = 60.0211403}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104(104-73)(104-69)(104-66)}}{73}\normalsize = 56.7323107}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104(104-73)(104-69)(104-66)}}{66}\normalsize = 62.7493739}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 73, 69 и 66 равна 60.0211403
Высота треугольника опущенная с вершины A на сторону BC со сторонами 73, 69 и 66 равна 56.7323107
Высота треугольника опущенная с вершины C на сторону AB со сторонами 73, 69 и 66 равна 62.7493739
Ссылка на результат
?n1=73&n2=69&n3=66
Найти высоту треугольника со сторонами 108, 104 и 101
Найти высоту треугольника со сторонами 147, 127 и 99
Найти высоту треугольника со сторонами 116, 105 и 42
Найти высоту треугольника со сторонами 114, 97 и 97
Найти высоту треугольника со сторонами 128, 128 и 80
Найти высоту треугольника со сторонами 145, 132 и 122
Найти высоту треугольника со сторонами 147, 127 и 99
Найти высоту треугольника со сторонами 116, 105 и 42
Найти высоту треугольника со сторонами 114, 97 и 97
Найти высоту треугольника со сторонами 128, 128 и 80
Найти высоту треугольника со сторонами 145, 132 и 122