Рассчитать высоту треугольника со сторонами 74, 55 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 55 + 33}{2}} \normalsize = 81}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81(81-74)(81-55)(81-33)}}{55}\normalsize = 30.5890598}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81(81-74)(81-55)(81-33)}}{74}\normalsize = 22.735112}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81(81-74)(81-55)(81-33)}}{33}\normalsize = 50.9817663}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 55 и 33 равна 30.5890598
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 55 и 33 равна 22.735112
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 55 и 33 равна 50.9817663
Ссылка на результат
?n1=74&n2=55&n3=33
Найти высоту треугольника со сторонами 135, 114 и 99
Найти высоту треугольника со сторонами 82, 54 и 42
Найти высоту треугольника со сторонами 117, 94 и 46
Найти высоту треугольника со сторонами 102, 72 и 37
Найти высоту треугольника со сторонами 142, 117 и 100
Найти высоту треугольника со сторонами 137, 125 и 125
Найти высоту треугольника со сторонами 82, 54 и 42
Найти высоту треугольника со сторонами 117, 94 и 46
Найти высоту треугольника со сторонами 102, 72 и 37
Найти высоту треугольника со сторонами 142, 117 и 100
Найти высоту треугольника со сторонами 137, 125 и 125