Рассчитать высоту треугольника со сторонами 74, 58 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 58 + 27}{2}} \normalsize = 79.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79.5(79.5-74)(79.5-58)(79.5-27)}}{58}\normalsize = 24.225112}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79.5(79.5-74)(79.5-58)(79.5-27)}}{74}\normalsize = 18.9872499}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79.5(79.5-74)(79.5-58)(79.5-27)}}{27}\normalsize = 52.0391294}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 58 и 27 равна 24.225112
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 58 и 27 равна 18.9872499
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 58 и 27 равна 52.0391294
Ссылка на результат
?n1=74&n2=58&n3=27
Найти высоту треугольника со сторонами 143, 119 и 97
Найти высоту треугольника со сторонами 103, 97 и 62
Найти высоту треугольника со сторонами 109, 61 и 53
Найти высоту треугольника со сторонами 143, 139 и 78
Найти высоту треугольника со сторонами 107, 88 и 22
Найти высоту треугольника со сторонами 103, 76 и 65
Найти высоту треугольника со сторонами 103, 97 и 62
Найти высоту треугольника со сторонами 109, 61 и 53
Найти высоту треугольника со сторонами 143, 139 и 78
Найти высоту треугольника со сторонами 107, 88 и 22
Найти высоту треугольника со сторонами 103, 76 и 65