Рассчитать высоту треугольника со сторонами 74, 65 и 22

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 65 + 22}{2}} \normalsize = 80.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{80.5(80.5-74)(80.5-65)(80.5-22)}}{65}\normalsize = 21.194103}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{80.5(80.5-74)(80.5-65)(80.5-22)}}{74}\normalsize = 18.6164418}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{80.5(80.5-74)(80.5-65)(80.5-22)}}{22}\normalsize = 62.6189405}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 65 и 22 равна 21.194103
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 65 и 22 равна 18.6164418
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 65 и 22 равна 62.6189405
Ссылка на результат
?n1=74&n2=65&n3=22