Рассчитать высоту треугольника со сторонами 74, 68 и 10

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 68 + 10}{2}} \normalsize = 76}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76(76-74)(76-68)(76-10)}}{68}\normalsize = 8.33220292}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76(76-74)(76-68)(76-10)}}{74}\normalsize = 7.6566189}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76(76-74)(76-68)(76-10)}}{10}\normalsize = 56.6589799}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 68 и 10 равна 8.33220292
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 68 и 10 равна 7.6566189
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 68 и 10 равна 56.6589799
Ссылка на результат
?n1=74&n2=68&n3=10