Рассчитать высоту треугольника со сторонами 74, 71 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 71 + 40}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-74)(92.5-71)(92.5-40)}}{71}\normalsize = 39.1495937}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-74)(92.5-71)(92.5-40)}}{74}\normalsize = 37.562448}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-74)(92.5-71)(92.5-40)}}{40}\normalsize = 69.4905288}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 71 и 40 равна 39.1495937
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 71 и 40 равна 37.562448
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 71 и 40 равна 69.4905288
Ссылка на результат
?n1=74&n2=71&n3=40