Рассчитать высоту треугольника со сторонами 74, 72 и 4
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 72 + 4}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-74)(75-72)(75-4)}}{72}\normalsize = 3.51089574}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-74)(75-72)(75-4)}}{74}\normalsize = 3.41600666}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-74)(75-72)(75-4)}}{4}\normalsize = 63.1961233}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 72 и 4 равна 3.51089574
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 72 и 4 равна 3.41600666
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 72 и 4 равна 63.1961233
Ссылка на результат
?n1=74&n2=72&n3=4
Найти высоту треугольника со сторонами 123, 114 и 53
Найти высоту треугольника со сторонами 78, 52 и 34
Найти высоту треугольника со сторонами 146, 136 и 125
Найти высоту треугольника со сторонами 114, 105 и 38
Найти высоту треугольника со сторонами 58, 52 и 19
Найти высоту треугольника со сторонами 80, 79 и 42
Найти высоту треугольника со сторонами 78, 52 и 34
Найти высоту треугольника со сторонами 146, 136 и 125
Найти высоту треугольника со сторонами 114, 105 и 38
Найти высоту треугольника со сторонами 58, 52 и 19
Найти высоту треугольника со сторонами 80, 79 и 42