Рассчитать высоту треугольника со сторонами 74, 72 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 72 + 43}{2}} \normalsize = 94.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94.5(94.5-74)(94.5-72)(94.5-43)}}{72}\normalsize = 41.6183835}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94.5(94.5-74)(94.5-72)(94.5-43)}}{74}\normalsize = 40.4935623}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94.5(94.5-74)(94.5-72)(94.5-43)}}{43}\normalsize = 69.6865956}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 72 и 43 равна 41.6183835
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 72 и 43 равна 40.4935623
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 72 и 43 равна 69.6865956
Ссылка на результат
?n1=74&n2=72&n3=43
Найти высоту треугольника со сторонами 135, 135 и 79
Найти высоту треугольника со сторонами 76, 56 и 42
Найти высоту треугольника со сторонами 116, 112 и 76
Найти высоту треугольника со сторонами 136, 111 и 100
Найти высоту треугольника со сторонами 86, 83 и 51
Найти высоту треугольника со сторонами 132, 129 и 85
Найти высоту треугольника со сторонами 76, 56 и 42
Найти высоту треугольника со сторонами 116, 112 и 76
Найти высоту треугольника со сторонами 136, 111 и 100
Найти высоту треугольника со сторонами 86, 83 и 51
Найти высоту треугольника со сторонами 132, 129 и 85