Рассчитать высоту треугольника со сторонами 74, 72 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 72 + 60}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-74)(103-72)(103-60)}}{72}\normalsize = 55.4281247}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-74)(103-72)(103-60)}}{74}\normalsize = 53.9300673}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-74)(103-72)(103-60)}}{60}\normalsize = 66.5137496}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 72 и 60 равна 55.4281247
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 72 и 60 равна 53.9300673
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 72 и 60 равна 66.5137496
Ссылка на результат
?n1=74&n2=72&n3=60
Найти высоту треугольника со сторонами 135, 75 и 63
Найти высоту треугольника со сторонами 118, 94 и 56
Найти высоту треугольника со сторонами 128, 83 и 61
Найти высоту треугольника со сторонами 114, 102 и 88
Найти высоту треугольника со сторонами 98, 96 и 86
Найти высоту треугольника со сторонами 136, 129 и 32
Найти высоту треугольника со сторонами 118, 94 и 56
Найти высоту треугольника со сторонами 128, 83 и 61
Найти высоту треугольника со сторонами 114, 102 и 88
Найти высоту треугольника со сторонами 98, 96 и 86
Найти высоту треугольника со сторонами 136, 129 и 32