Рассчитать высоту треугольника со сторонами 74, 73 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 73 + 39}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-74)(93-73)(93-39)}}{73}\normalsize = 37.8475079}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-74)(93-73)(93-39)}}{74}\normalsize = 37.3360551}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-74)(93-73)(93-39)}}{39}\normalsize = 70.8427712}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 73 и 39 равна 37.8475079
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 73 и 39 равна 37.3360551
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 73 и 39 равна 70.8427712
Ссылка на результат
?n1=74&n2=73&n3=39
Найти высоту треугольника со сторонами 143, 128 и 60
Найти высоту треугольника со сторонами 70, 66 и 6
Найти высоту треугольника со сторонами 56, 34 и 25
Найти высоту треугольника со сторонами 141, 77 и 65
Найти высоту треугольника со сторонами 123, 97 и 66
Найти высоту треугольника со сторонами 57, 40 и 28
Найти высоту треугольника со сторонами 70, 66 и 6
Найти высоту треугольника со сторонами 56, 34 и 25
Найти высоту треугольника со сторонами 141, 77 и 65
Найти высоту треугольника со сторонами 123, 97 и 66
Найти высоту треугольника со сторонами 57, 40 и 28