Рассчитать высоту треугольника со сторонами 75, 58 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 58 + 52}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-75)(92.5-58)(92.5-52)}}{58}\normalsize = 51.8595748}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-75)(92.5-58)(92.5-52)}}{75}\normalsize = 40.1047379}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-75)(92.5-58)(92.5-52)}}{52}\normalsize = 57.8433719}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 58 и 52 равна 51.8595748
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 58 и 52 равна 40.1047379
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 58 и 52 равна 57.8433719
Ссылка на результат
?n1=75&n2=58&n3=52
Найти высоту треугольника со сторонами 72, 58 и 58
Найти высоту треугольника со сторонами 125, 101 и 89
Найти высоту треугольника со сторонами 138, 126 и 28
Найти высоту треугольника со сторонами 125, 88 и 72
Найти высоту треугольника со сторонами 144, 142 и 106
Найти высоту треугольника со сторонами 141, 121 и 99
Найти высоту треугольника со сторонами 125, 101 и 89
Найти высоту треугольника со сторонами 138, 126 и 28
Найти высоту треугольника со сторонами 125, 88 и 72
Найти высоту треугольника со сторонами 144, 142 и 106
Найти высоту треугольника со сторонами 141, 121 и 99