Рассчитать высоту треугольника со сторонами 75, 61 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 61 + 27}{2}} \normalsize = 81.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81.5(81.5-75)(81.5-61)(81.5-27)}}{61}\normalsize = 25.2238181}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81.5(81.5-75)(81.5-61)(81.5-27)}}{75}\normalsize = 20.515372}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81.5(81.5-75)(81.5-61)(81.5-27)}}{27}\normalsize = 56.9871445}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 61 и 27 равна 25.2238181
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 61 и 27 равна 20.515372
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 61 и 27 равна 56.9871445
Ссылка на результат
?n1=75&n2=61&n3=27
Найти высоту треугольника со сторонами 132, 111 и 42
Найти высоту треугольника со сторонами 146, 129 и 56
Найти высоту треугольника со сторонами 92, 70 и 39
Найти высоту треугольника со сторонами 125, 125 и 95
Найти высоту треугольника со сторонами 140, 103 и 44
Найти высоту треугольника со сторонами 145, 89 и 59
Найти высоту треугольника со сторонами 146, 129 и 56
Найти высоту треугольника со сторонами 92, 70 и 39
Найти высоту треугольника со сторонами 125, 125 и 95
Найти высоту треугольника со сторонами 140, 103 и 44
Найти высоту треугольника со сторонами 145, 89 и 59