Рассчитать высоту треугольника со сторонами 75, 62 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 62 + 15}{2}} \normalsize = 76}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76(76-75)(76-62)(76-15)}}{62}\normalsize = 8.2181495}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76(76-75)(76-62)(76-15)}}{75}\normalsize = 6.79367026}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76(76-75)(76-62)(76-15)}}{15}\normalsize = 33.9683513}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 62 и 15 равна 8.2181495
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 62 и 15 равна 6.79367026
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 62 и 15 равна 33.9683513
Ссылка на результат
?n1=75&n2=62&n3=15
Найти высоту треугольника со сторонами 46, 46 и 31
Найти высоту треугольника со сторонами 141, 104 и 66
Найти высоту треугольника со сторонами 73, 65 и 42
Найти высоту треугольника со сторонами 122, 110 и 95
Найти высоту треугольника со сторонами 130, 83 и 54
Найти высоту треугольника со сторонами 115, 112 и 70
Найти высоту треугольника со сторонами 141, 104 и 66
Найти высоту треугольника со сторонами 73, 65 и 42
Найти высоту треугольника со сторонами 122, 110 и 95
Найти высоту треугольника со сторонами 130, 83 и 54
Найти высоту треугольника со сторонами 115, 112 и 70