Рассчитать высоту треугольника со сторонами 75, 62 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 62 + 20}{2}} \normalsize = 78.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78.5(78.5-75)(78.5-62)(78.5-20)}}{62}\normalsize = 16.6121966}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78.5(78.5-75)(78.5-62)(78.5-20)}}{75}\normalsize = 13.7327492}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78.5(78.5-75)(78.5-62)(78.5-20)}}{20}\normalsize = 51.4978094}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 62 и 20 равна 16.6121966
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 62 и 20 равна 13.7327492
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 62 и 20 равна 51.4978094
Ссылка на результат
?n1=75&n2=62&n3=20
Найти высоту треугольника со сторонами 125, 106 и 30
Найти высоту треугольника со сторонами 116, 69 и 55
Найти высоту треугольника со сторонами 48, 46 и 25
Найти высоту треугольника со сторонами 135, 131 и 67
Найти высоту треугольника со сторонами 30, 23 и 16
Найти высоту треугольника со сторонами 60, 58 и 21
Найти высоту треугольника со сторонами 116, 69 и 55
Найти высоту треугольника со сторонами 48, 46 и 25
Найти высоту треугольника со сторонами 135, 131 и 67
Найти высоту треугольника со сторонами 30, 23 и 16
Найти высоту треугольника со сторонами 60, 58 и 21