Рассчитать высоту треугольника со сторонами 75, 65 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 65 + 62}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-75)(101-65)(101-62)}}{65}\normalsize = 59.0809614}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-75)(101-65)(101-62)}}{75}\normalsize = 51.2034999}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-75)(101-65)(101-62)}}{62}\normalsize = 61.9397176}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 65 и 62 равна 59.0809614
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 65 и 62 равна 51.2034999
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 65 и 62 равна 61.9397176
Ссылка на результат
?n1=75&n2=65&n3=62
Найти высоту треугольника со сторонами 137, 134 и 23
Найти высоту треугольника со сторонами 69, 59 и 37
Найти высоту треугольника со сторонами 80, 74 и 46
Найти высоту треугольника со сторонами 131, 112 и 36
Найти высоту треугольника со сторонами 129, 90 и 65
Найти высоту треугольника со сторонами 136, 92 и 81
Найти высоту треугольника со сторонами 69, 59 и 37
Найти высоту треугольника со сторонами 80, 74 и 46
Найти высоту треугольника со сторонами 131, 112 и 36
Найти высоту треугольника со сторонами 129, 90 и 65
Найти высоту треугольника со сторонами 136, 92 и 81