Рассчитать высоту треугольника со сторонами 75, 65 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 65 + 62}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-75)(101-65)(101-62)}}{65}\normalsize = 59.0809614}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-75)(101-65)(101-62)}}{75}\normalsize = 51.2034999}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-75)(101-65)(101-62)}}{62}\normalsize = 61.9397176}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 65 и 62 равна 59.0809614
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 65 и 62 равна 51.2034999
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 65 и 62 равна 61.9397176
Ссылка на результат
?n1=75&n2=65&n3=62
Найти высоту треугольника со сторонами 142, 109 и 107
Найти высоту треугольника со сторонами 104, 76 и 58
Найти высоту треугольника со сторонами 105, 97 и 35
Найти высоту треугольника со сторонами 109, 108 и 6
Найти высоту треугольника со сторонами 141, 102 и 84
Найти высоту треугольника со сторонами 145, 90 и 59
Найти высоту треугольника со сторонами 104, 76 и 58
Найти высоту треугольника со сторонами 105, 97 и 35
Найти высоту треугольника со сторонами 109, 108 и 6
Найти высоту треугольника со сторонами 141, 102 и 84
Найти высоту треугольника со сторонами 145, 90 и 59