Рассчитать высоту треугольника со сторонами 75, 67 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 67 + 14}{2}} \normalsize = 78}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78(78-75)(78-67)(78-14)}}{67}\normalsize = 12.1157262}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78(78-75)(78-67)(78-14)}}{75}\normalsize = 10.8233821}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78(78-75)(78-67)(78-14)}}{14}\normalsize = 57.9824041}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 67 и 14 равна 12.1157262
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 67 и 14 равна 10.8233821
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 67 и 14 равна 57.9824041
Ссылка на результат
?n1=75&n2=67&n3=14
Найти высоту треугольника со сторонами 80, 67 и 67
Найти высоту треугольника со сторонами 78, 68 и 37
Найти высоту треугольника со сторонами 141, 131 и 97
Найти высоту треугольника со сторонами 149, 92 и 79
Найти высоту треугольника со сторонами 103, 97 и 21
Найти высоту треугольника со сторонами 112, 106 и 47
Найти высоту треугольника со сторонами 78, 68 и 37
Найти высоту треугольника со сторонами 141, 131 и 97
Найти высоту треугольника со сторонами 149, 92 и 79
Найти высоту треугольника со сторонами 103, 97 и 21
Найти высоту треугольника со сторонами 112, 106 и 47