Рассчитать высоту треугольника со сторонами 75, 67 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 67 + 20}{2}} \normalsize = 81}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81(81-75)(81-67)(81-20)}}{67}\normalsize = 19.2310175}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81(81-75)(81-67)(81-20)}}{75}\normalsize = 17.179709}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81(81-75)(81-67)(81-20)}}{20}\normalsize = 64.4239086}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 67 и 20 равна 19.2310175
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 67 и 20 равна 17.179709
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 67 и 20 равна 64.4239086
Ссылка на результат
?n1=75&n2=67&n3=20
Найти высоту треугольника со сторонами 79, 74 и 69
Найти высоту треугольника со сторонами 107, 103 и 52
Найти высоту треугольника со сторонами 80, 64 и 63
Найти высоту треугольника со сторонами 124, 120 и 101
Найти высоту треугольника со сторонами 112, 105 и 73
Найти высоту треугольника со сторонами 122, 113 и 24
Найти высоту треугольника со сторонами 107, 103 и 52
Найти высоту треугольника со сторонами 80, 64 и 63
Найти высоту треугольника со сторонами 124, 120 и 101
Найти высоту треугольника со сторонами 112, 105 и 73
Найти высоту треугольника со сторонами 122, 113 и 24