Рассчитать высоту треугольника со сторонами 75, 67 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 67 + 36}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-75)(89-67)(89-36)}}{67}\normalsize = 35.9801931}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-75)(89-67)(89-36)}}{75}\normalsize = 32.1423058}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-75)(89-67)(89-36)}}{36}\normalsize = 66.9631371}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 67 и 36 равна 35.9801931
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 67 и 36 равна 32.1423058
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 67 и 36 равна 66.9631371
Ссылка на результат
?n1=75&n2=67&n3=36
Найти высоту треугольника со сторонами 111, 91 и 74
Найти высоту треугольника со сторонами 130, 120 и 91
Найти высоту треугольника со сторонами 139, 106 и 86
Найти высоту треугольника со сторонами 87, 84 и 59
Найти высоту треугольника со сторонами 109, 109 и 10
Найти высоту треугольника со сторонами 112, 87 и 36
Найти высоту треугольника со сторонами 130, 120 и 91
Найти высоту треугольника со сторонами 139, 106 и 86
Найти высоту треугольника со сторонами 87, 84 и 59
Найти высоту треугольника со сторонами 109, 109 и 10
Найти высоту треугольника со сторонами 112, 87 и 36