Рассчитать высоту треугольника со сторонами 75, 67 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 67 + 66}{2}} \normalsize = 104}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104(104-75)(104-67)(104-66)}}{67}\normalsize = 61.4700437}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104(104-75)(104-67)(104-66)}}{75}\normalsize = 54.913239}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104(104-75)(104-67)(104-66)}}{66}\normalsize = 62.401408}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 67 и 66 равна 61.4700437
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 67 и 66 равна 54.913239
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 67 и 66 равна 62.401408
Ссылка на результат
?n1=75&n2=67&n3=66
Найти высоту треугольника со сторонами 143, 94 и 75
Найти высоту треугольника со сторонами 116, 90 и 27
Найти высоту треугольника со сторонами 108, 74 и 42
Найти высоту треугольника со сторонами 149, 144 и 82
Найти высоту треугольника со сторонами 117, 75 и 53
Найти высоту треугольника со сторонами 97, 88 и 14
Найти высоту треугольника со сторонами 116, 90 и 27
Найти высоту треугольника со сторонами 108, 74 и 42
Найти высоту треугольника со сторонами 149, 144 и 82
Найти высоту треугольника со сторонами 117, 75 и 53
Найти высоту треугольника со сторонами 97, 88 и 14