Рассчитать высоту треугольника со сторонами 75, 72 и 4
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 72 + 4}{2}} \normalsize = 75.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75.5(75.5-75)(75.5-72)(75.5-4)}}{72}\normalsize = 2.69987104}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75.5(75.5-75)(75.5-72)(75.5-4)}}{75}\normalsize = 2.5918762}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75.5(75.5-75)(75.5-72)(75.5-4)}}{4}\normalsize = 48.5976787}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 72 и 4 равна 2.69987104
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 72 и 4 равна 2.5918762
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 72 и 4 равна 48.5976787
Ссылка на результат
?n1=75&n2=72&n3=4
Найти высоту треугольника со сторонами 63, 46 и 23
Найти высоту треугольника со сторонами 105, 82 и 71
Найти высоту треугольника со сторонами 20, 19 и 16
Найти высоту треугольника со сторонами 146, 118 и 33
Найти высоту треугольника со сторонами 98, 93 и 54
Найти высоту треугольника со сторонами 66, 50 и 22
Найти высоту треугольника со сторонами 105, 82 и 71
Найти высоту треугольника со сторонами 20, 19 и 16
Найти высоту треугольника со сторонами 146, 118 и 33
Найти высоту треугольника со сторонами 98, 93 и 54
Найти высоту треугольника со сторонами 66, 50 и 22