Рассчитать высоту треугольника со сторонами 75, 73 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 73 + 13}{2}} \normalsize = 80.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{80.5(80.5-75)(80.5-73)(80.5-13)}}{73}\normalsize = 12.970865}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{80.5(80.5-75)(80.5-73)(80.5-13)}}{75}\normalsize = 12.6249752}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{80.5(80.5-75)(80.5-73)(80.5-13)}}{13}\normalsize = 72.8363957}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 73 и 13 равна 12.970865
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 73 и 13 равна 12.6249752
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 73 и 13 равна 72.8363957
Ссылка на результат
?n1=75&n2=73&n3=13
Найти высоту треугольника со сторонами 118, 105 и 36
Найти высоту треугольника со сторонами 142, 74 и 72
Найти высоту треугольника со сторонами 80, 66 и 40
Найти высоту треугольника со сторонами 128, 112 и 36
Найти высоту треугольника со сторонами 47, 42 и 41
Найти высоту треугольника со сторонами 125, 118 и 43
Найти высоту треугольника со сторонами 142, 74 и 72
Найти высоту треугольника со сторонами 80, 66 и 40
Найти высоту треугольника со сторонами 128, 112 и 36
Найти высоту треугольника со сторонами 47, 42 и 41
Найти высоту треугольника со сторонами 125, 118 и 43